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Abstract: Optically trapping red blood cells allows for the exploration of their biophysical
properties, which are affected in many diseases. However, because of their nonspherical shape,
the numerical calculation of the optical forces is slow, limiting the range of situations that can be
explored. Here we train a neural network that improves both the accuracy and the speed of the
calculation and we employ it to simulate the motion of a red blood cell under different beam
configurations. We found that by fixing two beams and controlling the position of a third, it is
possible to control the tilting of the cell. We anticipate this work to be a promising approach
to study the trapping of complex shaped and inhomogeneous biological materials, where the
possible photodamage imposes restrictions in the beam power.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In 1970 Arthur Ashkin first demonstrated how to manipulate and confine microscopic particles
suspended in water through radiation pressure [1]. Following the first demonstration of optical
trapping, Ashkin and collaborators developed the single-beam gradient trap, today known as
optical tweezers (OT) [2,3]. The basic principles of OT utilise the fact that light carries momentum
which can be harvested to manipulate microscopic particles in solution. In its conventional and
simplest set-up, OT focus a collimated Gaussian laser beam to a diffraction-limited spot where it
can trap microparticles. Soon after the first demonstration of OT, Ashkin et al. employed them to
manipulate biological particles like bacteria and erythrocytes without causing damage [4,5].

In humans, erythrocytes, or red blood cells (RBCs), are anucleated cells responsible for the
oxygen delivery to tissues and organs. Mature and healthy RBCs have a biconcave disk shape
that minimizes the membrane bending energy. Typically, RBCs have diameter of 6-8 µm, a
peripheral thickest portion of 2-3 µm, and a central dimple 0.8-2 µm thick [6]. The excess surface
area and membrane elasticity render the cell elastic and permits the RBC to pass through the
microvasculature by deforming [7]. Alterations in the RBCs’ membrane elasticity are implicated
in severe disfunctions of the microcirculation (e.g., capillaries can be entirely clogged, triggering
tissue necrosis or organ damage and failure) [8]. The RBCs’ alteration can be genetically inherited
[9], a consequence of a pathogen infection [10], a metabolic disorder [11], or due to radiation
treatment [12]. Very recently, it has also been correlated to SARS-Cov2 infection [13].

In the last decades, OT have been widely applied in RBC research to investigate biochemical
and biophysical properties of both healthy and unhealthy RBC via single- or multi-beam OT [14].
In these studies, researchers have adopted two main approaches to trapping: the indirect trapping,
where handles as silica or polystyrene microspheres are used to manipulate the RBC [15], and
the direct trapping, where the light beam directly traps the RBC [5]. Studies on the RBC optical
trapping have demonstrated that high laser power (>500 mW) induces deoxygenation of the
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trapping site, cell membrane ionization, inactivation and cells expulsion from the trap by the
radiometric force. Moreover, the undesirable temperature rise due to the incident laser light (of
the order 1.4 C◦/100 mW [16]) which affect the Brownian motion adding noise to the system and
thus setting a limit of resolution. Also, under high laser power the shape change induced by the
radiation pressure could cause strong temperature gradient across the cell membrane which could
lead to membrane rupture [17]. Therefore, regardless from the mechanism of trapping, the nature
of biological samples makes them particularly susceptible to photodamage. To minimize this,
infrared light in the second biological window (wavelength around 1064 nm) and minimizing
optical power is generally preferred for experiments [18].

As the cell is significantly larger than the incident wavelength, the geometrical optics
approximation (GO) models properly the beam cell interaction [19–21]. GO assumes that the
beam can be discretized in a series of rays that carry a fraction of the total momentum and by
calculating and summing up the scattering of all rays, it is possible to compute the total force
applied. However, even though GO simplifies considerably the theoretical treatment compared
to a full wave optical approach [22], an accurate calculation requires consideration of a large
number of rays, with an associated high cost in computational time. Simulating the Brownian
dynamics requires repetition of the force calculation at each time step sequentially, which becomes
prohibitively slow if the force calculation is not optimized [23]. The fact that the calculation is
sequential and that the shape is complex prevents the use of conventional approaches to speed up
the calculation (e.g., parallelization and interpolation based approaches).

Machine learning, and in particular neural networks (NN), are emerging across a variety of
research fields as a powerful technique to solve challenging problems. Backed by their ability
to learn from previous examples in order to make new predictions, NN are contributing to
biology [24], food sensing control [25], and even to containment of epidemics [26]. In fact,
NN have recently been demonstrated as an useful technique to increase both the speed [27] and
the accuracy [28] of optical forces calculations when compared to GO, allowing the study of
more complex systems through Brownian dynamics simulations. While these previous works
consider spheres [27] and ellipsoids [28], there is no evident reason to remain constrained to
these relatively simple shapes. Indeed, the computation time saving that could be achieved by
using NN for force calculation of particles with more complex shapes makes this a particularly
attractive application.

In this work, we train a NN to enhance the speed and accuracy of the optical force calculation
for RBC. This permits a numerical exploration of the Brownian dynamics of a RBC, potentially
allowing to study in a more complete manner different trapping configurations. More efficient
trapping configurations employ less laser power and therefore reduce the risk of photo damaging
the trapped cells.

2. Methods

2.1. Model and geometrical optics calculations

In our model we consider a Gaussian beam propagating along the opposite direction of the force
of gravity (+z direction). The wavelength (1.064 µm) is selected to match the vast majority
of experiments and in agreement with previous works on trapping RBCs [11,17]. The OT
parameters are the ones of a typical OT experiment (beam power 5 mW, numerical aperture 1.3).

The RBC is assumed to be in its healthy biconcave disk conformation, and the parameters
describing the shape of the RBC are those reported by Evans et al. [6]. A radius (r) of 3.91 µm,
a central dimple with a thickness (tmin) of 0.81 µm, and a thickest portion, located at 2.76 µm
from the axis of symmetry, with a thickness (tmax) of 2.52 µm. According to the Evans-Fung
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model, the thickness (Z) of a section of the RBC reads:

Z(ρ) =
√︃

1 −

(︂ ρ
r

)︂2
·
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C0 + C2

(︂ ρ
r

)︂2
+ C4

(︂ ρ
r

)︂4
]︃

(1)

where ρ is the radial distance from the axis of symmetry, r is the cell radius and C0, C2 and C4
(0.81, 7.83, −4.39, respectively) are numerical values related to the observable parameters that
describe the cell morphology [29].

As RBCs are significantly larger than the wavelength of the incident light, the optical forces
acting on them can be calculated with GO. We perform this calculation with the specialized
software OTGO [30]. For biological samples, such as RBCs, that have a low refractive index
contrast with the typical suspending medium, the fraction of power that is reflected after a
scattering event is very low (<0.001) [31], therefore in our ray tracing calculations, only the first
two scattering (refraction) events are considered.

2.2. Diffusion tensor

The erratic motion of a particle trapped in liquid in an OT set up is influenced by the fluid’s
resistance, by the thermal noise, and by the external deterministic forces exerted by the OT
[22,32]. For non-spherical objects, a single scalar diffusion coefficient is not enough to describe
the statistics of the random motion. It is necessary to use a 6 x 6 diffusion tensor (D), which
depends on the particle shape and orientation [22]:

D =
⎡⎢⎢⎢⎢⎣
Dtt Dtr

Drt Drr

⎤⎥⎥⎥⎥⎦ (2)

where Dtt, Drr and Drt = Dtr
T are 3 x 3 blocks and the subscripts ’r’ and ’t’ refer to the particle’s

rotational and translational degrees of freedom, respectively.
Although an analytical expression for (D) exists for simple shapes like spheres, ellipsoids

or cylinders [33], the RBC morphology is more complex and requires numerical methods for
its determination. Here, we used the bead model technique developed by De La Torre et al.,
exploiting the widely used software winHYDRO++ [34,35]. In the bead model, a series of
spheres are used to approximate the size and the total volume of the RBC. From the bead
model, winHYDRO++ calculates the 6x6 tensor (Ξ) encoding the hydrodynamic resistance of
the non-spherical particle. We then obtain the diffusion tensor D via the generalised Einstein
relationship [36]:

D = kBTΞ−1 (3)

where kB is the Boltzmann constant, and T is the temperature of the system.
In the present study, the bead model is constructed in a strict sense, filling the volume of the

RBC considering only spheres of equal sizes. In this case, the centre of diffusion of the particle
coincides with the centre of mass of the particle, and the numerical output for the diffusion tensor
reads:

Dtt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
7.43×10−14 −4.83×10−20 6.23×10−21

5.93×10−21 7.43×10−14 5.99×10−21

−8.74×10−20 −5.42×10−19 6.28×10−14

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Drt = Dtr
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−6.18×10−15 −2.52×10−15 −1.75×10−15

−2.52×10−15 8.85×10−16 −2.72×10−15

−1.75×10−15 −2.72×10−15 −2.20×10−16

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)
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Drr =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
4.04×10−3 3.63×10−11 1.06×10−10

1.04×10−9 4.04×10−3 −7.85×10−10

1.02×10−10 3.17×10−10 3.36×10−3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where the units are m2

s , rad·m
s , and rad2

s respectively. Notice that the diagonal terms of Dtt and Drr
that indicate the diffusion coefficient along a specific direction (i.e., x,y,z) and a specific axis
(i.e., x,y,z) are several orders of magnitude larger than the off diagonal terms highlighting the
shape-induced directional dynamics typical of non-spherical particles [37].

2.3. Particle dynamics simulation

The simulation of the dynamics of the RBC is based on the works of M. X. Fernandes et
al. [32], and described in Ref. [22]. Two reference frames are defined: a particle reference
frame Σp, which has an origin that coincides with the particle’s centre of mass (CM) and the
centre of diffusion (CD), and a laboratory reference frame Σl that is centred at (0,0,0) and
which axes are oriented along x̂, ŷ and ẑ, Fig. 1(a). At time t, the RBC’s CD is located at
rCD(t) = [xCD(t), yCD(t), zCD(t)]. The cell orientation can be described by the angles α1(t),
β1(t) and γ1(t) defined with respect to the particle unit vector x̂p(t) = [x̂p,x(t), x̂p,y(t), x̂p,z(t)],
ŷp(t) = [ŷp,x(t), ŷp,y(t), ŷp,z(t)], ẑp(t) = [ẑp,x(t), ẑp,y(t), ẑp,z(t)]. D is obtained in the particle
reference frame, that is centred at rCD(t) and the axes are oriented along x̂p, ŷp and ẑp

Probability
distribution

a) b)

c) d) e)

Fig. 1. a) Definition of particle (yellow) and laboratory (white) reference frames and
rotation angles (α, β, γ) of the cell around the laboratory reference frame; b) schematic
depiction of the neural network. The input layer contains six neurons describing the cell
position and orientation, and the output layer has six neurons describing the components
of force and torque acting on the cell. In between are seven hidden layers (i = 7), each of
them with 256 neurons (j = 256). c-d) Density plots comparing the magnitude of the total
force (FNN

tot ) and torque (TNN
tot ) predicted with NN with those calculated with the GO method

(FGO
tot ) and (TGO

tot ). Regression lines are shown in red. e) Log-Log plot of the normalised
root mean squared error (NRMSE) between FNN

tot and FGO
tot , and TNN

tot and TGO
tot as a function

of the number of rays used in the GO calculation. For each data point, the NN employed
remains the same (trained with 4×102 rays).
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To simulate the free diffusion of an arbitrarily shaped particle from time t to the time step
t + ∆t, initially one has to calculate the increment of the particle position and orientation in Σp(t):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆xp

∆yp

∆zp

∆αp

∆βp

∆γp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
√

2∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wx

wy

wz

wα

wβ

wγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where [wx, wy, wz, wα, wβ , wγ]
T are white noise terms, random numbers obtained from a multi-

variate normal distribution with zero mean and covariance D. Successively, the increments of the
particle position calculated in Σp has to be transformed to Σl. This is given by the transformation
matrix:

MΣp→Σl (t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x̂p,x ŷp,x ẑp,x

x̂p,y ŷp,y ẑp,y

x̂p,z ŷp,z ẑp,z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8)

Therefore, the finite difference equation to update the particle position in Σl is:⎡⎢⎢⎢⎢⎢⎢⎢⎣
xCM(t + ∆t)

yCM(t + ∆t)

zCM(t + ∆t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
xCM(t)

yCM(t)

zCM(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+MΣp→Σl (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∆xp

∆yp

∆zp

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

Once the new particle position is calculated, one has to update the particle orientation from
Σp(t) to Σl(t), which is effectively a rotation of the particle unit vectors. This rotation, for small
angles, is expressed in Σp by the rotation matrix:

Rp(∆αp,∆βp,∆γp) = Rp,x(∆αp)Rp,y(∆βp)Rp,z(∆γp) (10)

where

Rp,x(∆αp) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos(∆αp) −sin(∆αp)

0 sin(∆αp) cos(∆αp)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Rp,y(∆βp) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos(∆βp) 0 sin(∆βp)

0 1 0

−sin(∆βp) 0 cos(∆βp)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Rp,z(∆γp) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos(∆γp) −sin(∆γp) 0

sin(∆γp) cos(∆γp) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13)
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Transforming this rotation matrix to Σl, we obtain the unit vectors representing the orientation
of the particle at the end of the time step:

[x̂p(t + ∆t), ŷp(t + ∆t), ẑp(t + ∆t)] = [x̂p(t), ŷp(t), ẑp(t)]Rp(∆αp,∆βp,∆γp) (14)

As the last step, the rotation matrix has to be updated:

MΣp→Σl (t + ∆t) =MΣp→Σl (t)Rp(∆αp,∆βp,∆γp) (15)

However, in the current situation, we must also account for the optical forces (F) and torques
(T) exerted by the optical trap on the centre of mass of the RBC. Therefore, taking into account F
and T, the increments of the particle orientation and position in Σp are:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆xp

∆yp

∆zp

∆αp

∆βp

∆γp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

D
kBT
∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx,p

Fy,p

Fz,p

Tx,p

Ty,p

Tz,p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
√

2∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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wy

wz

wα

wβ

wγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

which then need to be transformed back into Σl. However, F and T are calculated in Σl, and
therefore they must be transformed to Σp via the matrix MT

Σp→Σl
.

The finite difference scheme is combined with the NN or with the GO code to calculate the
optical forces and torques acting on the RBC and to simulate the Brownian dynamics of the
optically trapped particle. We estimate the time step, ∆t, for the Brownian motion simulation
from the trap stiffness reported by Tognato et al. [21], and from the diffusion properties of a
healthy RBC obtained here. The typical time scale on which the restoring force acts is given
by τOT =

γ
k , while the momentum relaxation time is given by τm = m

γ , where γ is the particle
friction coefficient, m is the meass of the particle and k is the trap constant. To assure numerical
stability, ∆t must fall in between these two characteristic time scales (τOT ≫ ∆t ≫ τm) [22].
From the diffusion tensor D, one can extract the diffusion properties of the RBC along a specific
direction (Di), then through the fluctuation-dissipation theorem one can obtain γi. For example,
for the x-direction one obtains γx =

kBT
Dx

∼ 5×10−8 kg
s . Therefore, considering a trap stiffness

in this direction kx ∼ 1.6 pN
µm , one obtains τOT ∼ 3×10−2s. On the other hand, given a mass of

∼ 1×10−11kg for a typical healthy RBC, one obtains τm ∼ 4×10−4s. A similar estimation can be
made for the other directions, and contemplating the magnitude of the other terms in D, a time
step ∆t = 0.001s is adequate to assure the numerical stability [22].

2.4. Neural network architecture and training

The neural network (NN) architecture is composed of one input layer with 6 neurons representing
position and orientation of the cell (x, y, z, cos(θ), sin(θ), ϕ), one output layer with 6 neurons
representing the force and torque components (Fx, Fy, Fz, Tx, Ty, Tz), and 7 hidden layers in
between with 256 neurons each, Fig. 1(b). While Σp encodes the orientation of the particle by
using 3 angles, because of symmetry, the orientation of the RBC can be completely defined by
the polar angle ϕ and the azimuthal angle θ, as shown in Fig. 1(a).

The total data generated with GO calculations is composed of 6×106 points. We divide this
data into three data sets: One for training (80% of the data), another one for validation (10% of
the data), and a last one for testing the final network performance (10% of the data). The training
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data are generated via GO calculations made in OTGO [30]. The cell is placed in uniformly
distributed positions in a cube of side 8µm centred at the origin of the Cartesian coordinates
system (i.e. −4µm ≤ x ≤ 4µm, −4µm ≤ y ≤ 4µm and −4µm ≤ z ≤ 4µm). Simultaneously, to
account for the possible different orientation of the RBC within the trap, the cell is uniformly and
randomly oriented in an interval for −π ≤ θ ≤ π and 0 ≤ ϕ ≤ π

2 . The training data are generated
for the simplest case of a single-beam OT with the geometrical focus centered at (0, 0, 0) and a
beam power of 5mW.

The NN is trained in Python using Keras (version 2.2.4-tf) [38]. The training of the NN is
divided into 5 different steps. The data pre-processing and the model definition, which are done
only once, and the loading of the data, the training step, and the evaluation of the performance,
that are carried out iteratively. The training data, generated as previously described, contains data
in different units and scales. While the position scale is in the order of ∼ 1×10−6m, the forces are
on the range of ∼ 1×10−12N, and the torques are around ∼ 1×10−18N · m. To achieve an efficient
training of the NN, we need to apply a pre-processing step where the variables must be rescaled
around unity and θ, that ranges from −π to π, is expressed in terms of sines and cosines to avoid
inconsistencies around 2π. Shuffling the data and dividing them into a validating and training set
is the final step of the pre-processing. In our case, the training data set contains 4.8×106 points,
6×105 different points are used for the validation data set, and 6×105 points are reserved for the
testing data set. In this work, we employ fully connected NNs where each neuron is activated by
a sigmoidal function. Defining the model implies choosing the number of layers and the number
of neurons per layer. Among the explored architectures, the one consisting of 7 hidden layers
provides the best results (in terms of accuracy, training time, and speed).

The iterative part of the training starts by loading the training data and applying the training
step where the NN weights are optimised to minimise the loss function. We use the mean squared
error as the loss function and the Keras implementation of the Adam optimiser [38]. Once the
training dataset is fully explored, the difference between the NN calculation and the validating
dataset (defined as the mean square difference) is computed. The iterative step is repeated until
this difference reaches its minimum value and we consider that the model is fully trained. The
training of the NN is done in a GPU type NVIDIA GeForce RTX 2060 with 16 GB of memory.
The processor of the computer is an Intel Core i7-10700, and it has 16 GB of RAM.

3. Results

3.1. Single beam optical tweezers

To evaluate the effectiveness of our approach, we start by testing the ability of the NN to predict
the forces and torques acting on an RBC in a single beam OT (SBOT). We compare the NN
predictions (trained with data generated using 4×102 rays) and the GO calculations considering
4 times more rays (1.6×103 rays) at 1×105 random positions and orientations. The 2D density
plots shown in Fig. 1(c and d) illustrate the agreement between the NN and GO in predicting
the optical forces (regression coefficient 0.998, R2 = 0.996) and torques (regression coefficient
0.999, R2 = 0.996), respectively. We further demonstrate the accuracy of the NN by comparing
our NN (trained with data generated with 4×102 rays) with the GO calculation (considering a
greater number of rays). Figure 1(e) shows the normalised root mean squared error (NRMSE)
between the predictions of the NN trained with 4×102 rays and the GO calculations with different
numbers of rays (up to 5×103 rays). The NRMSE decreases as the number of rays increases. The
forces and torques calculated with 5×103 rays result more similar to the NN output than to the
forces obtained with a total of 4×102 rays, meaning that the NN is able to increase the accuracy
of the force and torque prediction, even for an object with such a complex shape.
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3.2. Double beam optical tweezers

Since the NN is trained for a SBOT, one may think it can only predict the optical forces and
torques for a SBOT. However, the NN can be used multiple times to simulate multi-beam optical
tweezers. In fact, the NN can predict the forces generated by a single beam on different locations
on the cell, and the total force acting on the centre of mass of the cell may then be calculated
as the vector sum of each contribution. The experimental implementation of a multi-beam
OT setup presents greater challenges in the beam alignment, power balance and beam control
compared to a single-beam configuration. However, recent advancements in the field of OT
and beam shaping techniques have made it possible to realize the potential of multi-beam OT
in experimental setups [22,39,40]. Here we consider a double-beam optical tweezers (DBOT)
where the two beams’ geometric foci are positioned 5.06µm apart along the x-axis, similar to the
experiments conducted by Agrawal et al. [11], Fig. 2(a). To the best of our knowledge, the cell
configuration observed by Agrawal et al. is the only one observed experimentally when a double
beam optical tweezer is employed for trapping. Indeed, optical torques and forces are responsible
to maintain the positional and orientational equilibrium of the cell. In fact, for any displacements
from the equilibrium configuration restoring torques/forces act on the cell pushing it back to the
equilibrium position and orientation [21].

a) b)

c)

e)d) x

y

z

Fig. 2. a) Schematic depiction of an RBC trapped by a double-beam OT. b-c) Comparison
between the GO calculation and the NN prediction for the b) torque-rotation curve for rotation
around the x-axis and c) force-displacement curve along the x-direction. (d) Comparison of
the probability distribution obtained with the GO calculation and with the NN prediction for
a RBC in a DBOT. (e) Cell orientations in the numerical simulation for both GO and NN.

Figure 2(b-c) shows Tx(α) and Fx(x) calculated with GO and predicted with the NN for a cell
in its folded configuration (i.e., cell major axis parallel to the optical axis) trapped in a DBOT. In
both cases, the NN predictions (solid line) agree well with the GO method (dots), demonstrating
the possibility to use the NN for multi-beam optical traps. We therefore conclude that this
approach can be extended to predict forces and torques generated by a three- and four-beam OT,
situations in which the GO calculation is considerably slower given the very large number of
light rays required.
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We now investigate the cell’s dynamics within a DBOT using both NN and GO to compute the
optical forces. The simulation of the Brownian dynamics follows the strategy explained in the
Methods section (Particle dynamics simulation) where now, the force and torque considered is
the sum of the contributions of each of the beams. Figure 2(d) shows the probability distribution
of the centre of mass of the cell for a total simulation time of 5s, while Fig. 2(e) shows the
orientation of the cell with respect to the fixed reference frame as a function of the simulation
time. It is important mentioning that in the current configuration a rotation around the y-axis
(β) would be a rotation around the cell axis of symmetry and therefore completely irrelevant.
By extracting the average values for each degree of freedom, it is possible to compare the final
equilibrium configuration obtained with the NN and with GO. Indeed, the average values obtained
with the predictions of the NN and GO methods agree well and are also in good agreement with
previously reported values [21], Table 1.

Table 1. Equilibrium position and orientation for a RBC
in a double-beam OT as found with geometrical optics

(GO) and with neural networks (NN). For each parameter
we report the average and the standard deviation.

GO NN

x2,eq(µm) 0.01 ± 0.05 0.01 ± 0.05

y2,eq(µm) 0.00 ± 0.05 0.00 ± 0.04

z2,eq(µm) −0.20 ± 0.08 −0.18 ± 0.08

φ2,eq(
◦) 90.65 ± 2.11 90.27 ± 1.44

θ2,eq(
◦) −90.45 ± 1.06 −90.09 ± 0.92

Moreover, the biggest advantage of using the NN for numerical simulations is a consistent
decrease in the simulation time required to achieve the same precision (the NN is two orders of
magnitude faster). Since the NN shows a higher computational efficiency, hereafter, we make use
of the NN prediction to simulate the Brownian dynamics of an optically trapped RBC.

We therefore move to extract quantitative information on the trap constants. Initially we
analyse the hydrodynamics of the RBC, since non-spherical particle could have an intrinsic
roto-translation coupling due to their peculiar shape [37]. In our case, the diffusion tensor D
does not show any strong roto-translation coupling; therefore, we do not expect to find any strong
correlation in the cell’s motion intrinsically due to the RBC’s hydrodynamics. Still, optically
trapped non-spherical particles could show roto-translation coupling in their motion as previously
observed by others. In this framework, the normalised auto-correlation function (ACF) has been
successfully used to extract quantitative information about the trapping constants [41,42].

We first evaluate the spatial ACFs
(︁
Cxx (τ) , Cyy (τ) , Czz (τ)

)︁
of the particle centre of mass

trajectories. Cxx (τ) and Czz (τ) decay as a single exponential with characteristic decay frequencies
ωx = 28 s−1 and ωz = 6.4 s−1. Contrariwise, Cyy (τ) is well fitted with a double exponential
with characteristic frequencies ωy,1 = 42 s−1 and ωy,2 = 2.7 s−1, Fig. 3(a). We associate the fast
decay rate to the translation, while the slower decay can be related to rotation around the x-axis
(α) induced by a motion along the y-direction. The values of the normalized cross-correlation
function between α and y at zero time lag (Cαy(0) = −0.368) further confirm a roto-translation
coupling, Fig. 3(c). [43] Fig. 3(b) shows a density plot of the rotation around the x-axis (α) as
function of the motion along the y-direction. Here it can be seen a moderate negative correlation
which suggests that the RBC rotates as it moves away from yeq,2, and undergoes to an “oscillating”
motion about the equilibrium configuration where it is stably confined. To better comprehend
this correlation we simulate Fy (α) (Fig. 3(d)) and τx (y) (Fig. 3(e)) which undoubtedly shows
the coupling between the motion along y and α. Actually, the cell in its “folded” position (i.e.
α = 90◦) is constantly subjected to a force along the y-direction that moves the particle away from
yeq,2 which in turns induces a rotation around the x-direction. On the other hand, as extensively
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described by Tognato et al., the transverse forces and torques components confine the cell in its
“folded” configuration [21]. The overall consequence of these stable and unstable equilibria is a
“circulating motion” of the cell within the optical trap about the equilibrium configuration. This
would suggest that the coupling is intrinsically due to particle shape and to the optical trap rather
than to the hydrodynamic of the particle.

Fig. 3. a) Translational autocorrelation function. The solid lines are exponential fits. Cxx (t),
Czz (t), decay as single exponential while Cyy (t) as double exponential. b) y − α correlation
shown as density plot. c) Normalised cross-correlation function between the rotation around
the x-axis (α) and the y-displacement (red line exponential fit). Both Fy (α) d) and Tx (y) e)
reveal unstable equilibrium when the cell is tilted of 90◦ around the x-axis (i.e. RBC in its
folded position)

Nevertheless we do not consider directly the membrane properties, any pathology that affects
the morphology of a RBC can be monitored by our method. In fact, Brownian motion can
be particularly useful in detecting shape asymmetry [44]. Shape irregularities in the RBC
morphology could be caused by a pathogen infection as well as genetic inherited diseases. These
shape deformities are mainly due to a drastic change in the biomechanical properties of RBC.
For example, patients affected by diseases like malaria [10] or sickle cell disease [45] present
erythrocytes with various level of morphological distortion. These anomalies could lead to a
divergence from an ideal Brownian motion of a optically trapped healthy RBC which can be
modeled with our methodology. For example, these roto-translation deviations from the ideal
Brownian motion could be used in detecting pathogenic or genetic inherited diseases, helping in
an early diagnose of disease.

Lastly, we extract average values and the standard deviations for the force constants (k2,x =
ωxkbT

Dxx
= 0.166 ± 0.024 pN

µm·mW , k2,y =
ωykbT

Dyy
= 0.218 ± 0.025 pN

µm·mW , k2,z =
ωzkbT

Dzz
= 0.005 ±

0.001 pN
µm·mW ). These values are in excellent agreement with a previously reported work [21].

Similarly to the translational motion, we calculate Cαα (τ) and Cγγ (τ). Cαα (τ) and Cγγ (τ) decay
as a single exponential and the respective trap constant are: kα = ωαkbT

Dαα
= 0.352 ± 0.096 pN·µm

rad·mW

and kγ =
ωγkbT
Dγγ

= 1.587 ± 0.382 pN·µm
rad·mW . We do not analyse the dynamics around β since the cell

is not confined about this axis.
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3.3. Triple beam optical tweezers

As previously suggested, one of the greatest advantage of using a NN instead of GO is the
significant lowered computation time, especially when a very high number of light rays is needed
(e.g. a triple- or four beams optical tweezer). Now, we exploit this feature to investigate the
equilibrium orientation and position of a RBC with a reconfigurable triple-beam OT.

If directly trapped, a healthy biconcave RBC can assume two different and alternative
orientations within the optical trap depending on the number of beams used for trapping [14,21].
In a double-beam OT, the major axis of a RBC is parallel to the optical axis and the beam foci
are contained in the cell, known as “folded” configuration [11]. On the contrary, if three or four
beams arranged in symmetric configurations are used (i.e. beams foci on the vertex of equilateral
triangle or a square), the major axis of the cell is confined to be orthogonal to the optical axis (i.e.
α = 0◦), configuration referred to as ’flat’ configuration [46]. Here, we sought for alternative
(and intermediate) RBC equilibrium configurations in respect to the well-known “folded” and
“flat” ones.

We consider a trap configuration that is intermediate to those traps able to trap the cell in its
“folded” or “flat” configuration. We consider a triple-beam optical tweezers (TBOT) composed
by three identical and tightly focused Gaussian laser beams. Two beams are always arranged
along the x-axis in a diametrically opposite location on the thickest portion of the cell (white
crosses in Fig. 4(a)). A third beam (yellow cross in Fig. 4(a)) can be translated over the thickest
portion of the cell and is used to counteract Tx generated by the two fixed beams. For simplicity,
henceforth, the position of the moving beam is described by a polar co-ordinates system in the
x − y plane. Its location is defined by a single angle (ζ ), and the distance from the origin is fixed
and equal to the radius of the thickest portion of the cell (2.76µm), Fig. 4(a).

Next, we proceed with the identification of the positional and translational equilibria. As
a first step in our investigation, we simulate a force-field acting on the cell for ζ = 45◦ to
appreciate the effect of the potential landscape on the RBC. In this simulation, the cell is in
its “flat” configuration and located at z = 0. It can be seen that the light pattern creates a very
complex force-field (Fig. 4(b)). Non-negligible optical forces act simultaneously along the x−
and y-direction for every location of the cell. The complexity of the force-field makes it extremely
difficult to identify the equilibrium positions (i.e., point in space where a specific force component
vanishes with negative slope). This process would require several reiterations for every degree of
freedom, rendering the process labour intensive. However, noting that if a particle is subjected
to an optical potential it falls into the equilibrium position/orientation, it would be possible to
identify the equilibrium configuration studying its dynamics as suggested by Cao et al. [47].
From symmetry arguments, the effect of different locations of beam 3 can be understood as
restricting ζ in the interval [0◦, 90◦] as schematically depicted in Fig. 4(a). Moreover, since we
are looking for alternative equilibrium configurations (or to a transition from a “flat-like” to
“folded-like” configuration), it is also rational to disregard every position where two beams are
too close to each other (i.e. ζ<15◦), which should induce a “folded” configuration. Thus, the
position of beam 3 can be restricted to 15◦ ≤ ζ ≤ 90◦. To evaluate the effect of the reconfigurable
optical trap, ζ is sampled every 15◦, and for each ζ the Brownian dynamics are simulated for
a 10 s trajectory starting from a RBC positioned in its ’flat’ configuration (θ = 0◦ and ϕ = 0◦)
centred at (0, 0, 0). The simulation finishes once the cell equilibrates around a stable position
and orientation. The final position and orientation are then given as the average position and
orientation with the standard deviation of the last second of the simulation. Figure 4(c) shows the
3D trajectories of the RBC’s CM obtained from the simulations carried out for different ζ . Here,
while x and y equilibrium positions remain close to the origin for different angles, the equilibrium
in z does depend on ζ . In particular, for ζ<30◦, zeq<0µm and for ζ>45◦, zeq>0µm, Fig. 4(c). We
anticipate that for ζ ≤ 30◦, the cell is in its “folded” configuration, Fig. 4(d) and Fig. 4(f). This is
due to a combination of the light intensity distribution and the cell configuration within the trap.
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Fig. 4. a) Schematic depiction of the triple-beam optical trap and the polar co-ordinates
system used to identify the position of the moving beam, and respective beam definition as
beam 1, 2 and 3. (b) Force-field acting on the RBC located on a grid of coordinates in the x-y
plane for ζ = 45◦. The color scale indicates the magnitude of the total force acting on the
x-y plane, while the grey arrows indicate the direction of the force. (c) Three-dimensional
trajectories of the cell centre of mass over a simulation time of 10 s for different ζ , and the
average values for the last second of simulation. d) Polar (ϕ) and e) azimuthal (θ) orientation
of the RBC as a function of the simulation time. Average orientations are measured over
the last second of the simulation. The error bar represents the standard deviation. f,g)
Final equilibrium configuration for a RBC in the reconfigurable triple beam optical trap for
ζ = 15◦ and 90◦ respectively. The blue dot indicates the center of mass of the RBC while the
red stars indicates the beams’ foci. The numbers indicate the position of each of the beams.

In fact, when the cell is in its “folded” position, the cell’s major axes are parallel to the direction
of propagation of the light beam. In this condition, more highly converging “light rays” strike the
biggest faces of the RBC. This increases significantly the gradient force (Fg). Simultaneously,
while in folded position, the scattering force (Fs) decreases appreciably because of the smaller
geometrical cross-section of the cell. However, if ζ increases, this effect is less pronounced since
the light rays strike the cell less symmetrically, and for ζ = 30◦, zeq ∼ −0.2µm. Conversely, for
ζ ≥ 45◦ a net shift in the axial position is evidenced (zeq ∼ 0.8µm), and this is due to a sequential
shifting from the “folded-like” configuration to a “flat-like” configuration, Fig. 4(c) and Fig. 4(d).
Much more interesting is the analysis of the rotational equilibrium. In Fig. 4(d) are shown the
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polar orientation (ϕ) of the cell as a function of the simulation time for different locations of the
moving beam (i.e. various ζ ). It is evident that ζ strongly influences the final polar orientation of
the cell, Fig. 4(d). In particular, as beam 3 approaches beam 2, the cell tilts more until it reaches
the “folded” configuration (i.e. ϕ = 90◦) for ζ = 30◦. Analysing the final orientation of the cell
in more detail, it is possible to discriminate between three different regions. When the two beams
are close to each other, ζ ≤ 30◦, the cell is in the “folded” configuration. If 30◦ ≤ ζ ≤ 75◦,
the RBC’s tilting seems to vary linearly with ζ , from a “folded-like” configuration to “flat-like”
configuration. The last region is for ζ ≥ 75◦, where the cell tilting cannot be decreased further,
Fig. 4(d). It is also interesting to note the minor effect that ζ has on θ. Here, we define θ = 0◦
when zp (defined in Fig. 1(a)) is pointing along the positive x-direction. For example, in the
simple case of a double beam optical tweezers, the cell plane point towards the positive (θ = 90◦)
or negative (θ = 90◦) y-axis. Either direction are equally plausible due to the symmetry of the
cell. Therefore, in the case of a triple beam optical tweezers, the induced cell rotation around
the z-axis is relatively small for different location of beam 3. In fact, the cell rotates at most
of ≈ 10◦. Yet, the rotation can be explained with the tendency of maximizing the overlapping
volume between the trapped particle and the illuminating beam in order to minimize the energy
of the system. This can be well understood in the discrete dipole approximation. In particular,
for ζ = 45◦ it is possible to obtain the highest cell’s tilting around the z-axis, Fig. 4(e). For every
other ζ , the tilting of the RBC around the z-direction decreases towards θ = 90◦.

4. Conclusions

Although geometrical optics enables the calculation of optical forces exerted on a trapped RBC,
achieving an accurate calculation had traditionally been a task known for its time-consuming
nature. In this work we have demonstrated that by using NN, one can significantly increase
the speed of calculation without compromising the accuracy. This enhancement of the force
calculations has allowed us to explore systems that were almost impossible to tackle with the
conventional method for optical force calculation. In particular, we have focused on the analysis
of the dynamics of trapped RBC with multiple beams. This can potentially allow determination
of the best trapping configuration and to minimize the incident laser power and therefore reduce
the risk of photodamaging the trapped cells. Importantly, the proposed strategy can be readily
extended to investigate position and orientational control over other complex-shaped particles
using different beam configurations as well, broadening its applicability and potential impact.
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